LCMS employs a number of cross-walking methods to combine classes in different ways to meet the need for varying levels of thematic detail. In general, products with higher numbers of classes exhibit lower levels of accuracy. Users should use the level that best matches their error tolerance and need for thematic detail.
This document will provide guidance for crosswalking the delivered LCMS products to these standard Levels. Each level will also have a respective accuracy report provided.
Below are tables illustrating the relationship between the levels and how they are binned
Level 1 | Level 2 | Level 3 | |
---|---|---|---|
1 | Disturbance | Wind | Wind |
2 | Disturbance | Wind | Hurricane |
3 | Disturbance | Other Loss | Snow or Ice Transition |
4 | Disturbance | Desiccation | Desiccation |
5 | Disturbance | Inundation | Inundation |
6 | Disturbance | Fire | Prescribed Fire |
7 | Disturbance | Fire | Wildfire |
8 | Disturbance | Mechanical Land Transformation | Mechanical Land Transformation |
9 | Disturbance | Tree Removal | Tree Removal |
10 | Disturbance | Insect, Disease, or Drought Stress | Defoliation |
11 | Disturbance | Insect, Disease, or Drought Stress | Southern Pine Beetle |
12 | Disturbance | Insect, Disease, or Drought Stress | Insect, Disease, or Drought Stress |
13 | Disturbance | Other Loss | Other Loss |
14 | Vegetation Successional Growth | Vegetation Successional Growth | Vegetation Successional Growth |
15 | Stable | Stable | Stable |
16 | Non-Processing Area Mask | Non-Processing Area Mask | Non-Processing Area Mask |
Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|
1 | Vegetated | Tree Vegetated | Tree | Tree |
2 | Vegetated | Tree Vegetated | Tree | Tall Shrub & Tree Mix (AK Only) |
3 | Vegetated | Tree Vegetated | Tree | Shrub & Tree Mix |
4 | Vegetated | Tree Vegetated | Tree | Grass/Forb/Herb & Tree Mix |
5 | Vegetated | Tree Vegetated | Tree | Barren & Tree Mix |
6 | Vegetated | Non-Tree Vegetated | Shrub | Tall Shrub (AK Only) |
7 | Vegetated | Non-Tree Vegetated | Shrub | Shrub |
8 | Vegetated | Non-Tree Vegetated | Shrub | Grass/Forb/Herb & Shrub Mix |
9 | Vegetated | Non-Tree Vegetated | Shrub | Barren & Shrub Mix |
10 | Vegetated | Non-Tree Vegetated | Grass/Forb/Herb | Grass/Forb/Herb |
11 | Vegetated | Non-Tree Vegetated | Grass/Forb/Herb | Barren & Grass/Forb/Herb Mix |
12 | Non-Vegetated | Non-Vegetated | Barren or Impervious | Barren or Impervious |
13 | Non-Vegetated | Non-Vegetated | Snow or Ice | Snow or Ice |
14 | Non-Vegetated | Non-Vegetated | Water | Water |
15 | Non-Processing Area Mask | Non-Processing Area Mask | Non-Processing Area Mask | Non-Processing Area Mask |
Level 1 | Level 2 | |
---|---|---|
1 | Anthropogenic | Agriculture |
2 | Anthropogenic | Developed |
3 | Non-Anthropogenic | Forest |
4 | Non-Anthropogenic | Other |
5 | Non-Anthropogenic | Rangeland or Pasture |
6 | Non-Processing Area Mask | Non-Processing Area Mask |
For the best results, we recommend using the following crosswalks when converting between different levels.
Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
Remap To: [1, 1, 8, 2, 3, 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11]
Visualization JSON:
{'Change_class_names': ['Wind', 'Desiccation', 'Inundation', 'Fire', 'Mechanical Land Transformation', 'Tree Removal', 'Insect, Disease, or Drought Stress', 'Other Loss', 'Vegetation Successional Growth', 'Stable', 'Non-Processing Area Mask'], 'Change_class_palette': ['FF09F3', 'CC982E', '0ADAFF', 'D54309', 'FAFA4B', 'AFDE1C', 'F39268', 'C291D5', '00A398', '3D4551', '1B1716'], 'Change_class_values': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]}
Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
Remap To: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4]
Visualization JSON:
{'Change_class_names': ['Disturbance', 'Vegetation Successional Growth', 'Stable', 'Non-Processing Area Mask'], 'Change_class_palette': ['D54309', '00A398', '3D4551', '1B1716'], 'Change_class_values': [1, 2, 3, 4]}
Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Remap To: [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 7]
Visualization JSON:
{'Land_Cover_class_names': ['Tree', 'Shrub', 'Grass/Forb/Herb', 'Barren or Impervious', 'Snow or Ice', 'Water', 'Non-Processing Area Mask'], 'Land_Cover_class_palette': ['004E2B', 'F89A1C', 'E5E98A', '893F54', 'E4F5FD', '00B6F0', '1B1716'], 'Land_Cover_class_values': [1, 2, 3, 4, 5, 6, 7]}
Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Remap To: [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4]
Visualization JSON:
{'Land_Cover_class_names': ['Tree Vegetated', 'Non-Tree Vegetated', 'Non-Vegetated', 'Non-Processing Area Mask'], 'Land_Cover_class_palette': ['004E2B', '8DA463', '893F54', '1B1716'], 'Land_Cover_class_values': [1, 2, 3, 4]}
Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
Remap To: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3]
Visualization JSON:
{'Land_Cover_class_names': ['Vegetated', 'Non-Vegetated', 'Non-Processing Area Mask'], 'Land_Cover_class_palette': ['61BB46', '58646E', '1B1716'], 'Land_Cover_class_values': [1, 2, 3]}
Remap From: [1, 2, 3, 4, 5, 6]
Remap To: [1, 1, 2, 2, 2, 3]
Visualization JSON:
{'Land_Use_class_names': ['Anthropogenic', 'Non-Anthropogenic', 'Non-Processing Area Mask'], 'Land_Use_class_palette': ['FF9EAB', '004E2B', '1B1716'], 'Land_Use_class_values': [1, 2, 3]}
Overall Accuracy: 97.03 +/- 0.07
Balanced Accuracy: 64.97 +/- 1.44
Kappa: 0.54
Users Accuracy (100%-Commission Error):
Stable: 98.42
Disturbance: 56.39
Vegetation Successional Growth: 55.47
Users Error:
Stable: 0.05
Disturbance: 2.71
Vegetation Successional Growth: 1.26
Producers Accuracy (100%-Omission Error):
Stable: 98.54
Disturbance: 36.81
Vegetation Successional Growth: 59.57
Producers Error:
Stable: 0.05
Disturbance: 2.13
Vegetation Successional Growth: 1.29
Number of Samples in each class:
Stable: 55984
Disturbance: 551
Vegetation Successional Growth: 1478
Observed | ||||||
Stable | Disturbance | Vegetation Successional Growth | Users Acc | Users SE | ||
Predicted | Stable | 55267.98 | 311.86 | 577.52 | 98.42 | 0.05 |
Disturbance | 141.70 | 189.50 | 4.85 | 56.39 | 2.71 | |
Vegetation Successional Growth | 675.35 | 13.51 | 858.07 | 55.47 | 1.26 | |
Producers Acc | 98.54 | 36.81 | 59.57 | None | ||
Producers SE | 0.05 | 2.13 | 1.29 | None |
Overall Accuracy: 89.50 +/- 0.05
Balanced Accuracy: 67.10 +/- 0.36
Kappa: 0.50
Users Accuracy (100%-Commission Error):
Stable: 94.41
Disturbance: 50.61
Vegetation Successional Growth: 54.14
Users Error:
Stable: 0.04
Disturbance: 0.56
Vegetation Successional Growth: 0.27
Producers Accuracy (100%-Omission Error):
Stable: 93.92
Disturbance: 50.53
Vegetation Successional Growth: 56.86
Producers Error:
Stable: 0.04
Disturbance: 0.56
Vegetation Successional Growth: 0.28
Number of Samples in each class:
Stable: 310309
Disturbance: 8060
Vegetation Successional Growth: 31879
Observed | ||||||
Stable | Disturbance | Vegetation Successional Growth | Users Acc | Users SE | ||
Predicted | Stable | 290830.28 | 3505.11 | 13718.17 | 94.41 | 0.04 |
Disturbance | 3707.68 | 4037.60 | 232.48 | 50.61 | 0.56 | |
Vegetation Successional Growth | 15131.31 | 448.36 | 18390.79 | 54.14 | 0.27 | |
Producers Acc | 93.92 | 50.53 | 56.86 | None | ||
Producers SE | 0.04 | 0.56 | 0.28 | None |
Overall Accuracy: 96.80 +/- 0.07
Balanced Accuracy: 23.97 +/- 6.33
Kappa: 0.41
Users Accuracy (100%-Commission Error):
Desiccation: Too few samples to assess accuracy
Fire: 82.76
Veg-Growth: 51.33
Harvest: 64.81
Insect-Disease-Drought: 6.28
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.51
Stable: 98.48
Wind: Too few samples to assess accuracy
Users Error:
Desiccation: Too few samples to assess accuracy
Fire: 4.42
Veg-Growth: 1.47
Harvest: 15.30
Insect-Disease-Drought: 4.74
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.41
Stable: 0.05
Wind: Too few samples to assess accuracy
Producers Accuracy (100%-Omission Error):
Desiccation: Too few samples to assess accuracy
Fire: 53.08
Veg-Growth: 55.37
Harvest: 16.90
Insect-Disease-Drought: 5.24
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.55
Stable: 98.29
Wind: Too few samples to assess accuracy
Producers Error:
Desiccation: Too few samples to assess accuracy
Fire: 4.68
Veg-Growth: 1.52
Harvest: 6.13
Insect-Disease-Drought: 3.98
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.44
Stable: 0.05
Wind: Too few samples to assess accuracy
Number of Samples in each class:
Desiccation: 2 (Too few samples to assess accuracy)
Fire: 147
Veg-Growth: 1477
Harvest: 101
Insect-Disease-Drought: 85
Inundation: 9 (Too few samples to assess accuracy)
Mechanical: 23 (Too few samples to assess accuracy)
Other: 185
Stable: 55984
Wind: 0
Observed | |||||||||||||
Desiccation | Fire | Veg-Growth | Harvest | Insect-Disease-Drought | Inundation | Mechanical | Other | Stable | Wind | Users Acc | Users SE | ||
Predicted | Desiccation | 0.0 | 0.00 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 1.10 | 36.78 | 0.0 | 0.0 | 0.0 |
Fire | 0.0 | 60.40 | 4.94 | 0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 7.49 | 0.0 | 82.76 | 4.42 | |
Veg-Growth | 0.0 | 2.49 | 593.27 | 4.45 | 2.81 | 0.00 | 0.26 | 0.61 | 551.88 | 0.0 | 51.33 | 1.47 | |
Harvest | 0.0 | 2.97 | 0.00 | 6.32 | 0.00 | 0.00 | 0.26 | 0.07 | 0.13 | 0.0 | 64.81 | 15.3 | |
Insect-Disease-Drought | 0.0 | 0.00 | 0.57 | 2.82 | 1.64 | 0.00 | 0.00 | 0.00 | 21.17 | 0.0 | 6.28 | 4.74 | |
Inundation | 0.0 | 0.00 | 0.84 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 44.00 | 0.0 | 0.0 | 0.0 | |
Mechanical | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.29 | 0.00 | 0.97 | 0.0 | 23.08 | 37.48 | |
Other | 0.0 | 0.00 | 1.48 | 1.13 | 0.52 | 0.07 | 0.16 | 1.58 | 304.04 | 0.0 | 0.51 | 0.41 | |
Stable | 2.2 | 47.94 | 469.51 | 22.43 | 26.41 | 4.95 | 1.87 | 284.34 | 55522.07 | 0.0 | 98.48 | 0.05 | |
Wind | 0.0 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | 0.0 | |
Producers Acc | 0.0 | 53.08 | 55.37 | 16.90 | 5.24 | 0.00 | 10.24 | 0.55 | 98.29 | 0.0 | None | ||
Producers SE | 0.0 | 4.68 | 1.52 | 6.13 | 3.98 | 0.00 | 17.97 | 0.44 | 0.05 | 0.0 | None |
Overall Accuracy: 92.48 +/- 0.05
Balanced Accuracy: 29.42 +/- 2.97
Kappa: 0.40
Users Accuracy (100%-Commission Error):
Desiccation: 17.92
Fire: 71.90
Veg-Growth: 49.87
Harvest: 85.22
Insect-Disease-Drought: 20.98
Inundation: 14.41
Mechanical: 25.44
Other: 0.92
Stable: 95.73
Wind: 2.29
Users Error:
Desiccation: 3.09
Fire: 3.70
Veg-Growth: 0.38
Harvest: 1.93
Insect-Disease-Drought: 1.27
Inundation: 3.27
Mechanical: 4.05
Other: 0.21
Stable: 0.04
Wind: 2.37
Producers Accuracy (100%-Omission Error):
Desiccation: 39.80
Fire: 36.87
Veg-Growth: 42.79
Harvest: 17.00
Insect-Disease-Drought: 17.30
Inundation: 23.39
Mechanical: 6.11
Other: 11.03
Stable: 96.58
Wind: 3.33
Producers Error:
Desiccation: 5.89
Fire: 2.84
Veg-Growth: 0.35
Harvest: 0.91
Insect-Disease-Drought: 1.07
Inundation: 5.01
Mechanical: 1.09
Other: 2.35
Stable: 0.03
Wind: 3.43
Number of Samples in each class:
Desiccation: 134
Fire: 398
Veg-Growth: 31326
Harvest: 3381
Insect-Disease-Drought: 2634
Inundation: 132
Mechanical: 777
Other: 299
Stable: 301757
Wind: 49
Observed | |||||||||||||
Desiccation | Fire | Veg-Growth | Harvest | Insect-Disease-Drought | Inundation | Mechanical | Other | Stable | Wind | Users Acc | Users SE | ||
Predicted | Desiccation | 27.53 | 0.00 | 1.27 | 0.00 | 1.09 | 0.00 | 0.55 | 0.00 | 123.22 | 0.00 | 17.92 | 3.09 |
Fire | 0.00 | 106.21 | 21.51 | 2.41 | 1.12 | 0.00 | 0.17 | 0.03 | 16.27 | 0.00 | 71.9 | 3.7 | |
Veg-Growth | 2.43 | 12.31 | 8552.50 | 133.78 | 27.20 | 3.53 | 30.72 | 3.35 | 8382.84 | 1.66 | 49.87 | 0.38 | |
Harvest | 0.00 | 5.44 | 2.44 | 288.19 | 0.91 | 3.19 | 5.87 | 0.34 | 28.89 | 2.90 | 85.22 | 1.93 | |
Insect-Disease-Drought | 0.00 | 17.16 | 69.02 | 19.06 | 214.34 | 0.00 | 0.33 | 3.81 | 697.87 | 0.03 | 20.98 | 1.27 | |
Inundation | 0.00 | 0.00 | 0.18 | 0.00 | 0.00 | 16.67 | 0.55 | 0.00 | 98.27 | 0.00 | 14.41 | 3.27 | |
Mechanical | 0.00 | 0.00 | 0.55 | 6.75 | 0.55 | 0.18 | 29.48 | 0.00 | 78.19 | 0.17 | 25.44 | 4.05 | |
Other | 5.19 | 7.10 | 43.65 | 569.10 | 33.55 | 3.99 | 58.99 | 19.65 | 1385.65 | 5.29 | 0.92 | 0.21 | |
Stable | 34.02 | 139.87 | 11295.43 | 661.69 | 958.81 | 42.94 | 353.18 | 150.92 | 305791.03 | 16.41 | 95.73 | 0.04 | |
Wind | 0.00 | 0.00 | 0.34 | 14.18 | 1.25 | 0.77 | 2.44 | 0.00 | 19.99 | 0.91 | 2.29 | 2.37 | |
Producers Acc | 39.80 | 36.87 | 42.79 | 17.00 | 17.30 | 23.39 | 6.11 | 11.03 | 96.58 | 3.33 | None | ||
Producers SE | 5.89 | 2.84 | 0.35 | 0.91 | 1.07 | 5.01 | 1.09 | 2.35 | 0.03 | 3.43 | None |
Overall Accuracy: 95.35 +/- 0.09
Balanced Accuracy: 95.10 +/- 0.15
Kappa: 0.88
Users Accuracy (100%-Commission Error):
VEG: 98.17
NON-VEG: 87.67
Users Error:
VEG: 0.07
NON-VEG: 0.26
Producers Accuracy (100%-Omission Error):
VEG: 95.60
NON-VEG: 94.60
Producers Error:
VEG: 0.10
NON-VEG: 0.19
Number of Samples in each class:
VEG: 48503
NON-VEG: 9510
Observed | |||||
VEG | NON-VEG | Users Acc | Users SE | ||
Predicted | VEG | 41696.31 | 779.23 | 98.17 | 0.07 |
NON-VEG | 1919.01 | 13645.78 | 87.67 | 0.26 | |
Producers Acc | 95.60 | 94.60 | None | ||
Producers SE | 0.10 | 0.19 | None |
Overall Accuracy: 95.71 +/- 0.03
Balanced Accuracy: 81.89 +/- 0.25
Kappa: 0.59
Users Accuracy (100%-Commission Error):
VEG: 98.15
NON-VEG: 57.39
Users Error:
VEG: 0.02
NON-VEG: 0.34
Producers Accuracy (100%-Omission Error):
VEG: 97.30
NON-VEG: 66.48
Producers Error:
VEG: 0.03
NON-VEG: 0.35
Number of Samples in each class:
VEG: 317873
NON-VEG: 32375
Observed | |||||
VEG | NON-VEG | Users Acc | Users SE | ||
Predicted | VEG | 322919.24 | 6077.77 | 98.15 | 0.02 |
NON-VEG | 8949.47 | 12055.29 | 57.39 | 0.34 | |
Producers Acc | 97.30 | 66.48 | None | ||
Producers SE | 0.03 | 0.35 | None |
Overall Accuracy: 83.79 +/- 0.15
Balanced Accuracy: 85.39 +/- 0.24
Kappa: 0.75
Users Accuracy (100%-Commission Error):
TREE_VEG: 79.43
NON-TREE_VEG: 85.38
NON-VEG: 87.67
Users Error:
TREE_VEG: 0.28
NON-TREE_VEG: 0.24
NON-VEG: 0.26
Producers Accuracy (100%-Omission Error):
TREE_VEG: 86.68
NON-TREE_VEG: 74.89
NON-VEG: 94.60
Producers Error:
TREE_VEG: 0.24
NON-TREE_VEG: 0.28
NON-VEG: 0.19
Number of Samples in each class:
TREE_VEG: 25183
NON-TREE_VEG: 23320
NON-VEG: 9510
Observed | ||||||
TREE VEG | NON-TREE VEG | NON-VEG | Users Acc | Users SE | ||
Predicted | TREE VEG | 17089.42 | 4218.15 | 206.29 | 79.43 | 0.28 |
NON-TREE VEG | 2491.10 | 17897.63 | 572.94 | 85.38 | 0.24 | |
NON-VEG | 136.05 | 1782.95 | 13645.78 | 87.67 | 0.26 | |
Producers Acc | 86.68 | 74.89 | 94.60 | None | ||
Producers SE | 0.24 | 0.28 | 0.19 | None |
Overall Accuracy: 87.20 +/- 0.06
Balanced Accuracy: 80.74 +/- 0.21
Kappa: 0.76
Users Accuracy (100%-Commission Error):
TREE_VEG: 90.47
NON-TREE_VEG: 88.22
NON-VEG: 57.39
Users Error:
TREE_VEG: 0.08
NON-TREE_VEG: 0.07
NON-VEG: 0.34
Producers Accuracy (100%-Omission Error):
TREE_VEG: 85.22
NON-TREE_VEG: 90.53
NON-VEG: 66.48
Producers Error:
TREE_VEG: 0.10
NON-TREE_VEG: 0.07
NON-VEG: 0.35
Number of Samples in each class:
TREE_VEG: 202848
NON-TREE_VEG: 115025
NON-VEG: 32375
Observed | ||||||
TREE VEG | NON-TREE VEG | NON-VEG | Users Acc | Users SE | ||
Predicted | TREE VEG | 116843.92 | 10762.01 | 1549.40 | 90.47 | 0.08 |
NON-TREE VEG | 19003.98 | 176309.33 | 4528.37 | 88.22 | 0.07 | |
NON-VEG | 1264.05 | 7685.42 | 12055.29 | 57.39 | 0.34 | |
Producers Acc | 85.22 | 90.53 | 66.48 | None | ||
Producers SE | 0.10 | 0.07 | 0.35 | None |
Overall Accuracy: 72.05 +/- 0.19
Balanced Accuracy: 76.38 +/- 0.43
Kappa: 0.64
Users Accuracy (100%-Commission Error):
TREES: 79.43
SHRUBS: 72.71
GRASS: 43.40
BARREN: 67.68
SNOW: 90.59
WATER: 96.83
Users Error:
TREES: 0.28
SHRUBS: 0.47
GRASS: 0.45
BARREN: 0.62
SNOW: 0.36
WATER: 0.31
Producers Accuracy (100%-Omission Error):
TREES: 86.68
SHRUBS: 42.51
GRASS: 61.02
BARREN: 81.79
SNOW: 96.68
WATER: 89.60
Producers Error:
TREES: 0.24
SHRUBS: 0.40
GRASS: 0.53
BARREN: 0.56
SNOW: 0.23
WATER: 0.52
Number of Samples in each class:
TREES: 25183
SHRUBS: 14860
GRASS: 8460
BARREN: 4587
SNOW: 2828
WATER: 2095
Observed | |||||||||
TREES | SHRUBS | GRASS | BARREN | SNOW | WATER | Users Acc | Users SE | ||
Predicted | TREES | 17089.42 | 3059.00 | 1159.14 | 145.11 | 0.00 | 61.18 | 79.43 | 0.28 |
SHRUBS | 1282.76 | 6541.98 | 1099.74 | 73.43 | 0.00 | 0.00 | 72.71 | 0.47 | |
GRASS | 1208.34 | 5064.13 | 5191.78 | 252.73 | 0.00 | 246.78 | 43.4 | 0.45 | |
BARREN | 135.83 | 725.69 | 741.32 | 3871.29 | 188.61 | 57.42 | 67.68 | 0.62 | |
SNOW | 0.00 | 0.00 | 264.89 | 355.61 | 5974.48 | 0.00 | 90.59 | 0.36 | |
WATER | 0.22 | 0.00 | 51.06 | 35.03 | 16.85 | 3146.50 | 96.83 | 0.31 | |
Producers Acc | 86.68 | 42.51 | 61.02 | 81.79 | 96.68 | 89.60 | None | ||
Producers SE | 0.24 | 0.40 | 0.53 | 0.56 | 0.23 | 0.52 | None |
Overall Accuracy: 79.11 +/- 0.07
Balanced Accuracy: 71.77 +/- 3.20
Kappa: 0.70
Users Accuracy (100%-Commission Error):
TREES: 90.47
SHRUBS: 74.22
GRASS: 74.10
BARREN: 40.03
SNOW: 82.65
WATER: 93.95
Users Error:
TREES: 0.08
SHRUBS: 0.17
GRASS: 0.12
BARREN: 0.41
SNOW: 7.02
WATER: 0.30
Producers Accuracy (100%-Omission Error):
TREES: 85.22
SHRUBS: 60.53
GRASS: 86.90
BARREN: 54.69
SNOW: 62.30
WATER: 81.00
Producers Error:
TREES: 0.10
SHRUBS: 0.17
GRASS: 0.10
BARREN: 0.48
SNOW: 7.80
WATER: 0.46
Number of Samples in each class:
TREES: 202848
SHRUBS: 36067
GRASS: 78958
BARREN: 21543
SNOW: 840
WATER: 9992
Observed | |||||||||
TREES | SHRUBS | GRASS | BARREN | SNOW | WATER | Users Acc | Users SE | ||
Predicted | TREES | 116843.92 | 5987.33 | 4774.68 | 921.50 | 0.35 | 627.55 | 90.47 | 0.08 |
SHRUBS | 6578.43 | 48374.23 | 8398.92 | 1828.75 | 0.00 | 0.87 | 74.22 | 0.17 | |
GRASS | 12425.55 | 19746.46 | 99789.72 | 2040.16 | 0.00 | 658.59 | 74.1 | 0.12 | |
BARREN | 1161.78 | 5792.38 | 1645.11 | 5833.12 | 14.20 | 124.02 | 40.03 | 0.41 | |
SNOW | 0.00 | 0.00 | 0.00 | 5.05 | 24.04 | 0.00 | 82.65 | 7.02 | |
WATER | 102.28 | 19.28 | 228.65 | 37.54 | 0.00 | 6017.32 | 93.95 | 0.3 | |
Producers Acc | 85.22 | 60.53 | 86.90 | 54.69 | 62.30 | 81.00 | None | ||
Producers SE | 0.10 | 0.17 | 0.10 | 0.48 | 7.80 | 0.46 | None |
Overall Accuracy: 64.45 +/- 0.20
Balanced Accuracy: 35.76 +/- 0.35
Kappa: 0.57
Users Accuracy (100%-Commission Error):
TREES: 71.86
TS-TREES: 0.00
SHRUBS-TRE: 0.88
GRASS-TREE: 1.81
BARREN-TRE: nan
TS: 57.69
SHRUBS: 25.66
GRASS-SHRU: nan
BARREN-SHR: nan
GRASS: 42.29
BARREN-GRA: 2.56
BARREN-IMP: 67.68
SNOW: 90.59
WATER: 96.83
Users Error:
TREES: 0.31
TS-TREES: 0.00
SHRUBS-TRE: 1.34
GRASS-TREE: 0.66
BARREN-TRE: nan
TS: 0.64
SHRUBS: 0.80
GRASS-SHRU: nan
BARREN-SHR: nan
GRASS: 0.45
BARREN-GRA: 2.41
BARREN-IMP: 0.62
SNOW: 0.36
WATER: 0.31
Producers Accuracy (100%-Omission Error):
TREES: 91.85
TS-TREES: 0.00
SHRUBS-TRE: 0.03
GRASS-TREE: 0.74
BARREN-TRE: 0.00
TS: 63.39
SHRUBS: 12.88
GRASS-SHRU: 0.00
BARREN-SHR: 0.00
GRASS: 63.47
BARREN-GRA: 0.20
BARREN-IMP: 81.79
SNOW: 96.68
WATER: 89.60
Producers Error:
TREES: 0.21
TS-TREES: 0.00
SHRUBS-TRE: 0.04
GRASS-TREE: 0.27
BARREN-TRE: 0.00
TS: 0.65
SHRUBS: 0.43
GRASS-SHRU: 0.00
BARREN-SHR: 0.00
GRASS: 0.54
BARREN-GRA: 0.19
BARREN-IMP: 0.56
SNOW: 0.23
WATER: 0.52
Number of Samples in each class:
TREES: 21599
TS-TREES: 472
SHRUBS-TRE: 1787
GRASS-TREE: 1121
BARREN-TRE: 204
TS: 5407
SHRUBS: 5641
GRASS-SHRU: 3541
BARREN-SHR: 271
GRASS: 7843
BARREN-GRA: 617
BARREN-IMP: 4587
SNOW: 2828
WATER: 2095
Observed | |||||||||||||||||
TREES | TS-TREES | SHRUBS-TRE | GRASS-TREE | BARREN-TRE | TS | SHRUBS | GRASS-SHRU | BARREN-SHR | GRASS | BARREN-GRA | BARREN-IMP | SNOW | WATER | Users Acc | Users SE | ||
Predicted | TREES | 15129.01 | 270.36 | 1080.63 | 537.81 | 54.68 | 1286.84 | 1218.91 | 294.46 | 50.72 | 932.56 | 0.87 | 136.69 | 0.00 | 61.18 | 71.86 | 0.31 |
TS-TREES | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 | 0.0 | |
SHRUBS-TRE | 9.10 | 0.00 | 0.43 | 0.00 | 0.00 | 7.23 | 31.41 | 0.00 | 0.00 | 0.00 | 0.00 | 0.43 | 0.00 | 0.00 | 0.88 | 1.34 | |
GRASS-TREE | 0.00 | 0.00 | 0.00 | 7.41 | 0.00 | 0.00 | 107.91 | 29.38 | 30.91 | 222.40 | 3.30 | 7.99 | 0.00 | 0.00 | 1.81 | 0.66 | |
BARREN-TRE | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | NaN | NaN | |
TS | 343.92 | 167.11 | 201.49 | 67.29 | 28.44 | 3469.31 | 1212.16 | 103.87 | 29.68 | 386.46 | 0.00 | 3.67 | 0.00 | 0.00 | 57.69 | 0.64 | |
SHRUBS | 191.29 | 49.96 | 128.03 | 100.90 | 4.34 | 466.73 | 765.97 | 405.57 | 88.70 | 704.70 | 8.58 | 69.76 | 0.00 | 0.00 | 25.66 | 0.8 | |
GRASS-SHRU | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | NaN | NaN | |
BARREN-SHR | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | NaN | NaN | |
GRASS | 681.15 | 25.27 | 223.49 | 271.98 | 6.45 | 219.03 | 2356.03 | 2439.96 | 7.25 | 5041.63 | 149.05 | 252.73 | 0.00 | 246.78 | 42.29 | 0.45 | |
BARREN-GRA | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 41.86 | 0.00 | 0.00 | 1.10 | 0.00 | 0.00 | 0.00 | 2.56 | 2.41 | |
BARREN-IMP | 116.05 | 0.00 | 5.64 | 10.69 | 3.44 | 22.91 | 256.67 | 367.86 | 78.25 | 364.84 | 376.48 | 3871.29 | 188.61 | 57.42 | 67.68 | 0.62 | |
SNOW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 239.51 | 25.38 | 355.61 | 5974.48 | 0.00 | 90.59 | 0.36 | |
WATER | 0.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 51.06 | 0.00 | 35.03 | 16.85 | 3146.50 | 96.83 | 0.31 | |
Producers Acc | 91.85 | 0.00 | 0.03 | 0.74 | 0.00 | 63.39 | 12.88 | 0.00 | 0.00 | 63.47 | 0.20 | 81.79 | 96.68 | 89.60 | None | ||
Producers SE | 0.21 | 0.00 | 0.04 | 0.27 | 0.00 | 0.65 | 0.43 | 0.00 | 0.00 | 0.54 | 0.19 | 0.56 | 0.23 | 0.52 | None |
Overall Accuracy: 67.18 +/- 0.08
Balanced Accuracy: 40.41 +/- 2.27
Kappa: 0.57
Users Accuracy (100%-Commission Error):
TREES: 82.35
TS-TREES: Not Modeled
SHRUBS-TRE: 10.68
GRASS-TREE: 35.26
BARREN-TRE: 26.15
TS: Not Modeled
SHRUBS: 39.11
GRASS-SHRU: 38.32
BARREN-SHR: 34.34
GRASS: 73.74
BARREN-GRA: 1.58
BARREN-IMP: 40.03
SNOW: 82.65
WATER: 93.95
Users Error:
TREES: 0.11
TS-TREES: Not Modeled
SHRUBS-TRE: 1.04
GRASS-TREE: 0.42
BARREN-TRE: 3.65
TS: Not Modeled
SHRUBS: 0.40
GRASS-SHRU: 0.24
BARREN-SHR: 0.50
GRASS: 0.12
BARREN-GRA: 0.66
BARREN-IMP: 0.41
SNOW: 7.02
WATER: 0.30
Producers Accuracy (100%-Omission Error):
TREES: 93.59
TS-TREES: Not Modeled
SHRUBS-TRE: 1.50
GRASS-TREE: 16.97
BARREN-TRE: 1.63
TS: Not Modeled
SHRUBS: 21.32
GRASS-SHRU: 40.25
BARREN-SHR: 23.13
GRASS: 88.40
BARREN-GRA: 0.20
BARREN-IMP: 54.69
SNOW: 62.30
WATER: 81.00
Producers Error:
TREES: 0.08
TS-TREES: Not Modeled
SHRUBS-TRE: 0.15
GRASS-TREE: 0.23
BARREN-TRE: 0.26
TS: Not Modeled
SHRUBS: 0.25
GRASS-SHRU: 0.25
BARREN-SHR: 0.37
GRASS: 0.10
BARREN-GRA: 0.08
BARREN-IMP: 0.48
SNOW: 7.80
WATER: 0.46
Number of Samples in each class:
TREES: 163335
TS-TREES: Not Modeled
SHRUBS-TRE: 10900
GRASS-TREE: 26494
BARREN-TRE: 2119
TS: Not Modeled
SHRUBS: 13095
GRASS-SHRU: 15831
BARREN-SHR: 7141
GRASS: 75723
BARREN-GRA: 3235
BARREN-IMP: 21543
SNOW: 840
WATER: 9992
Observed | |||||||||||||||
TREES | SHRUBS-TRE | GRASS-TREE | BARREN-TRE | SHRUBS | GRASS-SHRU | BARREN-SHR | GRASS | BARREN-GRA | BARREN-IMP | SNOW | WATER | Users Acc | Users SE | ||
Predicted | TREES | 94704.14 | 3394.83 | 9587.66 | 489.02 | 1399.95 | 1184.25 | 31.53 | 2759.18 | 65.99 | 810.22 | 0.35 | 581.85 | 82.35 | 0.11 |
SHRUBS-TRE | 310.94 | 94.82 | 109.76 | 4.04 | 203.43 | 110.39 | 16.06 | 36.90 | 0.00 | 1.16 | 0.00 | 0.00 | 10.68 | 1.04 | |
GRASS-TREE | 2242.73 | 835.58 | 4624.44 | 403.40 | 1090.87 | 1355.59 | 495.61 | 1824.39 | 88.04 | 110.13 | 0.00 | 43.29 | 35.26 | 0.42 | |
BARREN-TRE | 0.37 | 0.00 | 4.33 | 37.86 | 34.66 | 21.66 | 43.32 | 0.18 | 0.00 | 0.00 | 0.00 | 2.42 | 26.15 | 3.65 | |
SHRUBS | 283.42 | 387.61 | 1152.19 | 138.42 | 5829.34 | 4009.42 | 1372.74 | 1453.63 | 36.62 | 241.95 | 0.00 | 0.00 | 39.11 | 0.4 | |
GRASS-SHRU | 180.41 | 623.53 | 2576.79 | 381.75 | 10259.01 | 15876.80 | 4533.47 | 5328.32 | 945.74 | 720.78 | 0.00 | 0.87 | 38.32 | 0.24 | |
BARREN-SHR | 17.33 | 134.30 | 430.97 | 271.72 | 1282.94 | 2172.26 | 3038.24 | 368.78 | 265.83 | 866.01 | 0.00 | 0.00 | 34.34 | 0.5 | |
GRASS | 2959.94 | 843.68 | 8473.98 | 147.96 | 6105.01 | 12325.28 | 971.54 | 99037.43 | 746.62 | 2031.15 | 0.00 | 658.59 | 73.74 | 0.12 | |
BARREN-GRA | 0.00 | 0.00 | 0.00 | 0.00 | 104.34 | 121.30 | 118.98 | 0.00 | 5.66 | 9.01 | 0.00 | 0.00 | 1.58 | 0.66 | |
BARREN-IMP | 403.66 | 17.83 | 293.72 | 446.57 | 1029.34 | 2257.78 | 2505.26 | 999.90 | 645.21 | 5833.12 | 14.20 | 124.02 | 40.03 | 0.41 | |
SNOW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.05 | 24.04 | 0.00 | 82.65 | 7.02 | |
WATER | 90.94 | 3.64 | 2.79 | 4.91 | 1.98 | 11.28 | 6.03 | 226.13 | 2.52 | 37.54 | 0.00 | 6017.32 | 93.95 | 0.3 | |
Producers Acc | 93.59 | 1.50 | 16.97 | 1.63 | 21.32 | 40.25 | 23.13 | 88.40 | 0.20 | 54.69 | 62.30 | 81.00 | None | ||
Producers SE | 0.08 | 0.15 | 0.23 | 0.26 | 0.25 | 0.25 | 0.37 | 0.10 | 0.08 | 0.48 | 7.80 | 0.46 | None |
Overall Accuracy: 99.83 +/- 0.02
Balanced Accuracy: 72.71 +/- 2.79
Kappa: 0.59
Users Accuracy (100%-Commission Error):
Anthro: 85.26
Non-Anthro: 99.85
Users Error:
Anthro: 3.84
Non-Anthro: 0.02
Producers Accuracy (100%-Omission Error):
Anthro: 45.44
Non-Anthro: 99.98
Producers Error:
Anthro: 3.94
Non-Anthro: 0.01
Number of Samples in each class:
Anthro: 2226
Non-Anthro: 55787
Observed | |||||
Anthro | Non-Anthro | Users Acc | Users SE | ||
Predicted | Anthro | 72.53 | 12.53 | 85.26 | 3.84 |
Non-Anthro | 87.10 | 57868.17 | 99.85 | 0.02 | |
Producers Acc | 45.44 | 99.98 | None | ||
Producers SE | 3.94 | 0.01 | None |
Overall Accuracy: 90.70 +/- 0.05
Balanced Accuracy: 88.25 +/- 0.09
Kappa: 0.76
Users Accuracy (100%-Commission Error):
Anthro: 81.52
Non-Anthro: 94.02
Users Error:
Anthro: 0.13
Non-Anthro: 0.05
Producers Accuracy (100%-Omission Error):
Anthro: 83.13
Non-Anthro: 93.37
Producers Error:
Anthro: 0.12
Non-Anthro: 0.05
Number of Samples in each class:
Anthro: 74206
Non-Anthro: 276042
Observed | |||||
Anthro | Non-Anthro | Users Acc | Users SE | ||
Predicted | Anthro | 75736.91 | 17168.65 | 81.52 | 0.13 |
Non-Anthro | 15364.43 | 241731.78 | 94.02 | 0.05 | |
Producers Acc | 83.13 | 93.37 | None | ||
Producers SE | 0.12 | 0.05 | None |
Overall Accuracy: 84.93 +/- 0.15
Balanced Accuracy: 73.97 +/- 3.73
Kappa: 0.77
Users Accuracy (100%-Commission Error):
Agriculture: 75.75
Developed: 91.97
Forest: 83.08
Other: 92.37
Rangeland: 81.96
Users Error:
Agriculture: 7.09
Developed: 3.83
Forest: 0.27
Other: 0.22
Rangeland: 0.25
Producers Accuracy (100%-Omission Error):
Agriculture: 75.62
Developed: 37.70
Forest: 84.70
Other: 89.00
Rangeland: 82.82
Producers Error:
Agriculture: 7.09
Developed: 4.37
Forest: 0.26
Other: 0.26
Rangeland: 0.24
Number of Samples in each class:
Agriculture: 1076
Developed: 1150
Forest: 24106
Other: 9535
Rangeland: 22146
Observed | ||||||||
Agriculture | Developed | Forest | Other | Rangeland | Users Acc | Users SE | ||
Predicted | Agriculture | 27.72 | 0.00 | 6.07 | 0.00 | 2.80 | 75.75 | 7.09 |
Developed | 0.00 | 46.36 | 1.59 | 2.33 | 0.13 | 91.97 | 3.83 | |
Forest | 0.82 | 35.29 | 16054.33 | 157.39 | 3077.25 | 83.08 | 0.27 | |
Other | 0.00 | 4.70 | 69.24 | 13358.38 | 1029.99 | 92.37 | 0.22 | |
Rangeland | 8.11 | 36.62 | 2823.23 | 1490.92 | 19807.05 | 81.96 | 0.25 | |
Producers Acc | 75.62 | 37.70 | 84.70 | 89.00 | 82.82 | None | ||
Producers SE | 7.09 | 4.37 | 0.26 | 0.26 | 0.24 | None |
Overall Accuracy: 83.93 +/- 0.06
Balanced Accuracy: 73.95 +/- 0.27
Kappa: 0.77
Users Accuracy (100%-Commission Error):
Agriculture: 77.46
Developed: 88.87
Forest: 88.93
Other: 81.72
Rangeland: 83.35
Users Error:
Agriculture: 0.14
Developed: 0.38
Forest: 0.09
Other: 0.39
Rangeland: 0.11
Producers Accuracy (100%-Omission Error):
Agriculture: 89.19
Developed: 37.31
Forest: 91.07
Other: 70.93
Rangeland: 81.25
Producers Error:
Agriculture: 0.11
Developed: 0.38
Forest: 0.08
Other: 0.43
Rangeland: 0.11
Number of Samples in each class:
Agriculture: 48074
Developed: 26132
Forest: 187755
Other: 22717
Rangeland: 65570
Observed | ||||||||
Agriculture | Developed | Forest | Other | Rangeland | Users Acc | Users SE | ||
Predicted | Agriculture | 66628.46 | 2838.15 | 1894.62 | 107.21 | 14552.31 | 77.46 | 0.14 |
Developed | 151.83 | 6118.47 | 339.82 | 8.57 | 266.11 | 88.87 | 0.38 | |
Forest | 1267.45 | 3505.47 | 109449.70 | 922.98 | 7922.11 | 88.93 | 0.09 | |
Other | 17.59 | 216.15 | 320.55 | 7840.21 | 1199.69 | 81.72 | 0.39 | |
Rangeland | 6639.14 | 3718.64 | 8181.59 | 2174.25 | 103720.71 | 83.35 | 0.11 | |
Producers Acc | 89.19 | 37.31 | 91.07 | 70.93 | 81.25 | None | ||
Producers SE | 0.11 | 0.38 | 0.08 | 0.43 | 0.11 | None |