LCMS Levels Guidance

Introduction

LCMS employs a number of cross-walking methods to combine classes in different ways to meet the need for varying levels of thematic detail. In general, products with higher numbers of classes exhibit lower levels of accuracy. Users should use the level that best matches their error tolerance and need for thematic detail.

This document will provide guidance for crosswalking the delivered LCMS products to these standard Levels. Each level will also have a respective accuracy report provided.


Levels Tables

Below are tables illustrating the relationship between the levels and how they are binned

Change

  Level 1 Level 2 Level 3
1 Disturbance Wind Wind
2 Disturbance Wind Hurricane
3 Disturbance Other Loss Snow or Ice Transition
4 Disturbance Desiccation Desiccation
5 Disturbance Inundation Inundation
6 Disturbance Fire Prescribed Fire
7 Disturbance Fire Wildfire
8 Disturbance Mechanical Land Transformation Mechanical Land Transformation
9 Disturbance Tree Removal Tree Removal
10 Disturbance Insect, Disease, or Drought Stress Defoliation
11 Disturbance Insect, Disease, or Drought Stress Southern Pine Beetle
12 Disturbance Insect, Disease, or Drought Stress Insect, Disease, or Drought Stress
13 Disturbance Other Loss Other Loss
14 Vegetation Successional Growth Vegetation Successional Growth Vegetation Successional Growth
15 Stable Stable Stable
16 Non-Processing Area Mask Non-Processing Area Mask Non-Processing Area Mask

Land Cover

  Level 1 Level 2 Level 3 Level 4
1 Vegetated Tree Vegetated Tree Tree
2 Vegetated Tree Vegetated Tree Tall Shrub & Tree Mix (AK Only)
3 Vegetated Tree Vegetated Tree Shrub & Tree Mix
4 Vegetated Tree Vegetated Tree Grass/Forb/Herb & Tree Mix
5 Vegetated Tree Vegetated Tree Barren & Tree Mix
6 Vegetated Non-Tree Vegetated Shrub Tall Shrub (AK Only)
7 Vegetated Non-Tree Vegetated Shrub Shrub
8 Vegetated Non-Tree Vegetated Shrub Grass/Forb/Herb & Shrub Mix
9 Vegetated Non-Tree Vegetated Shrub Barren & Shrub Mix
10 Vegetated Non-Tree Vegetated Grass/Forb/Herb Grass/Forb/Herb
11 Vegetated Non-Tree Vegetated Grass/Forb/Herb Barren & Grass/Forb/Herb Mix
12 Non-Vegetated Non-Vegetated Barren or Impervious Barren or Impervious
13 Non-Vegetated Non-Vegetated Snow or Ice Snow or Ice
14 Non-Vegetated Non-Vegetated Water Water
15 Non-Processing Area Mask Non-Processing Area Mask Non-Processing Area Mask Non-Processing Area Mask

Land Use

  Level 1 Level 2
1 Anthropogenic Agriculture
2 Anthropogenic Developed
3 Non-Anthropogenic Forest
4 Non-Anthropogenic Other
5 Non-Anthropogenic Rangeland or Pasture
6 Non-Processing Area Mask Non-Processing Area Mask

Recommended Crosswalk

For the best results, we recommend using the following crosswalks when converting between different levels.

Change

Level 2:

Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Remap To: [1, 1, 8, 2, 3, 4, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11]

Visualization JSON: {'Change_class_names': ['Wind', 'Desiccation', 'Inundation', 'Fire', 'Mechanical Land Transformation', 'Tree Removal', 'Insect, Disease, or Drought Stress', 'Other Loss', 'Vegetation Successional Growth', 'Stable', 'Non-Processing Area Mask'], 'Change_class_palette': ['FF09F3', 'CC982E', '0ADAFF', 'D54309', 'FAFA4B', 'AFDE1C', 'F39268', 'C291D5', '00A398', '3D4551', '1B1716'], 'Change_class_values': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]}


Level 1:

Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Remap To: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4]

Visualization JSON: {'Change_class_names': ['Disturbance', 'Vegetation Successional Growth', 'Stable', 'Non-Processing Area Mask'], 'Change_class_palette': ['D54309', '00A398', '3D4551', '1B1716'], 'Change_class_values': [1, 2, 3, 4]}



Land Cover

Level 3:

Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Remap To: [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 5, 6, 7]

Visualization JSON: {'Land_Cover_class_names': ['Tree', 'Shrub', 'Grass/Forb/Herb', 'Barren or Impervious', 'Snow or Ice', 'Water', 'Non-Processing Area Mask'], 'Land_Cover_class_palette': ['004E2B', 'F89A1C', 'E5E98A', '893F54', 'E4F5FD', '00B6F0', '1B1716'], 'Land_Cover_class_values': [1, 2, 3, 4, 5, 6, 7]}


Level 2:

Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Remap To: [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4]

Visualization JSON: {'Land_Cover_class_names': ['Tree Vegetated', 'Non-Tree Vegetated', 'Non-Vegetated', 'Non-Processing Area Mask'], 'Land_Cover_class_palette': ['004E2B', '8DA463', '893F54', '1B1716'], 'Land_Cover_class_values': [1, 2, 3, 4]}


Level 1:

Remap From: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Remap To: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3]

Visualization JSON: {'Land_Cover_class_names': ['Vegetated', 'Non-Vegetated', 'Non-Processing Area Mask'], 'Land_Cover_class_palette': ['61BB46', '58646E', '1B1716'], 'Land_Cover_class_values': [1, 2, 3]}



Land Use

Level 1:

Remap From: [1, 2, 3, 4, 5, 6]

Remap To: [1, 1, 2, 2, 2, 3]

Visualization JSON: {'Land_Use_class_names': ['Anthropogenic', 'Non-Anthropogenic', 'Non-Processing Area Mask'], 'Land_Use_class_palette': ['FF9EAB', '004E2B', '1B1716'], 'Land_Use_class_values': [1, 2, 3]}



Accuracy Results

LCMS v2024-10 AK Change Level 1 Accuracy

Overall Accuracy: 97.03 +/- 0.07
Balanced Accuracy: 64.97 +/- 1.44
Kappa: 0.54

Users Accuracy (100%-Commission Error):
Stable: 98.42
Disturbance: 56.39
Vegetation Successional Growth: 55.47

Users Error:
Stable: 0.05
Disturbance: 2.71
Vegetation Successional Growth: 1.26

Producers Accuracy (100%-Omission Error):
Stable: 98.54
Disturbance: 36.81
Vegetation Successional Growth: 59.57

Producers Error:
Stable: 0.05
Disturbance: 2.13
Vegetation Successional Growth: 1.29

Number of Samples in each class:
Stable: 55984
Disturbance: 551
Vegetation Successional Growth: 1478

Observed
Stable Disturbance Vegetation Successional Growth Users Acc Users SE
Predicted Stable 55267.98 311.86 577.52 98.42 0.05
Disturbance 141.70 189.50 4.85 56.39 2.71
Vegetation Successional Growth 675.35 13.51 858.07 55.47 1.26
Producers Acc 98.54 36.81 59.57 None
Producers SE 0.05 2.13 1.29 None

LCMS v2024-10 CONUS Change Level 1 Accuracy

Overall Accuracy: 89.50 +/- 0.05
Balanced Accuracy: 67.10 +/- 0.36
Kappa: 0.50

Users Accuracy (100%-Commission Error):
Stable: 94.41
Disturbance: 50.61
Vegetation Successional Growth: 54.14

Users Error:
Stable: 0.04
Disturbance: 0.56
Vegetation Successional Growth: 0.27

Producers Accuracy (100%-Omission Error):
Stable: 93.92
Disturbance: 50.53
Vegetation Successional Growth: 56.86

Producers Error:
Stable: 0.04
Disturbance: 0.56
Vegetation Successional Growth: 0.28

Number of Samples in each class:
Stable: 310309
Disturbance: 8060
Vegetation Successional Growth: 31879

Observed
Stable Disturbance Vegetation Successional Growth Users Acc Users SE
Predicted Stable 290830.28 3505.11 13718.17 94.41 0.04
Disturbance 3707.68 4037.60 232.48 50.61 0.56
Vegetation Successional Growth 15131.31 448.36 18390.79 54.14 0.27
Producers Acc 93.92 50.53 56.86 None
Producers SE 0.04 0.56 0.28 None

LCMS v2024-10 AK Change Level 2 Accuracy

Overall Accuracy: 96.80 +/- 0.07
Balanced Accuracy: 23.97 +/- 6.33
Kappa: 0.41

Users Accuracy (100%-Commission Error):
Desiccation: Too few samples to assess accuracy
Fire: 82.76
Veg-Growth: 51.33
Harvest: 64.81
Insect-Disease-Drought: 6.28
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.51
Stable: 98.48
Wind: Too few samples to assess accuracy

Users Error:
Desiccation: Too few samples to assess accuracy
Fire: 4.42
Veg-Growth: 1.47
Harvest: 15.30
Insect-Disease-Drought: 4.74
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.41
Stable: 0.05
Wind: Too few samples to assess accuracy

Producers Accuracy (100%-Omission Error):
Desiccation: Too few samples to assess accuracy
Fire: 53.08
Veg-Growth: 55.37
Harvest: 16.90
Insect-Disease-Drought: 5.24
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.55
Stable: 98.29
Wind: Too few samples to assess accuracy

Producers Error:
Desiccation: Too few samples to assess accuracy
Fire: 4.68
Veg-Growth: 1.52
Harvest: 6.13
Insect-Disease-Drought: 3.98
Inundation: Too few samples to assess accuracy
Mechanical: Too few samples to assess accuracy
Other: 0.44
Stable: 0.05
Wind: Too few samples to assess accuracy

Number of Samples in each class:
Desiccation: 2 (Too few samples to assess accuracy)
Fire: 147
Veg-Growth: 1477
Harvest: 101
Insect-Disease-Drought: 85
Inundation: 9 (Too few samples to assess accuracy)
Mechanical: 23 (Too few samples to assess accuracy)
Other: 185
Stable: 55984
Wind: 0

Observed
Desiccation Fire Veg-Growth Harvest Insect-Disease-Drought Inundation Mechanical Other Stable Wind Users Acc Users SE
Predicted Desiccation 0.0 0.00 0.84 0.00 0.00 0.00 0.00 1.10 36.78 0.0 0.0 0.0
Fire 0.0 60.40 4.94 0.15 0.00 0.00 0.00 0.00 7.49 0.0 82.76 4.42
Veg-Growth 0.0 2.49 593.27 4.45 2.81 0.00 0.26 0.61 551.88 0.0 51.33 1.47
Harvest 0.0 2.97 0.00 6.32 0.00 0.00 0.26 0.07 0.13 0.0 64.81 15.3
Insect-Disease-Drought 0.0 0.00 0.57 2.82 1.64 0.00 0.00 0.00 21.17 0.0 6.28 4.74
Inundation 0.0 0.00 0.84 0.00 0.00 0.00 0.00 0.00 44.00 0.0 0.0 0.0
Mechanical 0.0 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.97 0.0 23.08 37.48
Other 0.0 0.00 1.48 1.13 0.52 0.07 0.16 1.58 304.04 0.0 0.51 0.41
Stable 2.2 47.94 469.51 22.43 26.41 4.95 1.87 284.34 55522.07 0.0 98.48 0.05
Wind 0.0 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0
Producers Acc 0.0 53.08 55.37 16.90 5.24 0.00 10.24 0.55 98.29 0.0 None
Producers SE 0.0 4.68 1.52 6.13 3.98 0.00 17.97 0.44 0.05 0.0 None

LCMS v2024-10 CONUS Change Level 2 Accuracy

Overall Accuracy: 92.48 +/- 0.05
Balanced Accuracy: 29.42 +/- 2.97
Kappa: 0.40

Users Accuracy (100%-Commission Error):
Desiccation: 17.92
Fire: 71.90
Veg-Growth: 49.87
Harvest: 85.22
Insect-Disease-Drought: 20.98
Inundation: 14.41
Mechanical: 25.44
Other: 0.92
Stable: 95.73
Wind: 2.29

Users Error:
Desiccation: 3.09
Fire: 3.70
Veg-Growth: 0.38
Harvest: 1.93
Insect-Disease-Drought: 1.27
Inundation: 3.27
Mechanical: 4.05
Other: 0.21
Stable: 0.04
Wind: 2.37

Producers Accuracy (100%-Omission Error):
Desiccation: 39.80
Fire: 36.87
Veg-Growth: 42.79
Harvest: 17.00
Insect-Disease-Drought: 17.30
Inundation: 23.39
Mechanical: 6.11
Other: 11.03
Stable: 96.58
Wind: 3.33

Producers Error:
Desiccation: 5.89
Fire: 2.84
Veg-Growth: 0.35
Harvest: 0.91
Insect-Disease-Drought: 1.07
Inundation: 5.01
Mechanical: 1.09
Other: 2.35
Stable: 0.03
Wind: 3.43

Number of Samples in each class:
Desiccation: 134
Fire: 398
Veg-Growth: 31326
Harvest: 3381
Insect-Disease-Drought: 2634
Inundation: 132
Mechanical: 777
Other: 299
Stable: 301757
Wind: 49

Observed
Desiccation Fire Veg-Growth Harvest Insect-Disease-Drought Inundation Mechanical Other Stable Wind Users Acc Users SE
Predicted Desiccation 27.53 0.00 1.27 0.00 1.09 0.00 0.55 0.00 123.22 0.00 17.92 3.09
Fire 0.00 106.21 21.51 2.41 1.12 0.00 0.17 0.03 16.27 0.00 71.9 3.7
Veg-Growth 2.43 12.31 8552.50 133.78 27.20 3.53 30.72 3.35 8382.84 1.66 49.87 0.38
Harvest 0.00 5.44 2.44 288.19 0.91 3.19 5.87 0.34 28.89 2.90 85.22 1.93
Insect-Disease-Drought 0.00 17.16 69.02 19.06 214.34 0.00 0.33 3.81 697.87 0.03 20.98 1.27
Inundation 0.00 0.00 0.18 0.00 0.00 16.67 0.55 0.00 98.27 0.00 14.41 3.27
Mechanical 0.00 0.00 0.55 6.75 0.55 0.18 29.48 0.00 78.19 0.17 25.44 4.05
Other 5.19 7.10 43.65 569.10 33.55 3.99 58.99 19.65 1385.65 5.29 0.92 0.21
Stable 34.02 139.87 11295.43 661.69 958.81 42.94 353.18 150.92 305791.03 16.41 95.73 0.04
Wind 0.00 0.00 0.34 14.18 1.25 0.77 2.44 0.00 19.99 0.91 2.29 2.37
Producers Acc 39.80 36.87 42.79 17.00 17.30 23.39 6.11 11.03 96.58 3.33 None
Producers SE 5.89 2.84 0.35 0.91 1.07 5.01 1.09 2.35 0.03 3.43 None

LCMS v2024-10 AK Land Cover Level 1 Accuracy

Overall Accuracy: 95.35 +/- 0.09
Balanced Accuracy: 95.10 +/- 0.15
Kappa: 0.88

Users Accuracy (100%-Commission Error):
VEG: 98.17
NON-VEG: 87.67

Users Error:
VEG: 0.07
NON-VEG: 0.26

Producers Accuracy (100%-Omission Error):
VEG: 95.60
NON-VEG: 94.60

Producers Error:
VEG: 0.10
NON-VEG: 0.19

Number of Samples in each class:
VEG: 48503
NON-VEG: 9510

Observed
VEG NON-VEG Users Acc Users SE
Predicted VEG 41696.31 779.23 98.17 0.07
NON-VEG 1919.01 13645.78 87.67 0.26
Producers Acc 95.60 94.60 None
Producers SE 0.10 0.19 None

LCMS v2024-10 CONUS Land Cover Level 1 Accuracy

Overall Accuracy: 95.71 +/- 0.03
Balanced Accuracy: 81.89 +/- 0.25
Kappa: 0.59

Users Accuracy (100%-Commission Error):
VEG: 98.15
NON-VEG: 57.39

Users Error:
VEG: 0.02
NON-VEG: 0.34

Producers Accuracy (100%-Omission Error):
VEG: 97.30
NON-VEG: 66.48

Producers Error:
VEG: 0.03
NON-VEG: 0.35

Number of Samples in each class:
VEG: 317873
NON-VEG: 32375

Observed
VEG NON-VEG Users Acc Users SE
Predicted VEG 322919.24 6077.77 98.15 0.02
NON-VEG 8949.47 12055.29 57.39 0.34
Producers Acc 97.30 66.48 None
Producers SE 0.03 0.35 None

LCMS v2024-10 AK Land Cover Level 2 Accuracy

Overall Accuracy: 83.79 +/- 0.15
Balanced Accuracy: 85.39 +/- 0.24
Kappa: 0.75

Users Accuracy (100%-Commission Error):
TREE_VEG: 79.43
NON-TREE_VEG: 85.38
NON-VEG: 87.67

Users Error:
TREE_VEG: 0.28
NON-TREE_VEG: 0.24
NON-VEG: 0.26

Producers Accuracy (100%-Omission Error):
TREE_VEG: 86.68
NON-TREE_VEG: 74.89
NON-VEG: 94.60

Producers Error:
TREE_VEG: 0.24
NON-TREE_VEG: 0.28
NON-VEG: 0.19

Number of Samples in each class:
TREE_VEG: 25183
NON-TREE_VEG: 23320
NON-VEG: 9510

Observed
TREE VEG NON-TREE VEG NON-VEG Users Acc Users SE
Predicted TREE VEG 17089.42 4218.15 206.29 79.43 0.28
NON-TREE VEG 2491.10 17897.63 572.94 85.38 0.24
NON-VEG 136.05 1782.95 13645.78 87.67 0.26
Producers Acc 86.68 74.89 94.60 None
Producers SE 0.24 0.28 0.19 None

LCMS v2024-10 CONUS Land Cover Level 2 Accuracy

Overall Accuracy: 87.20 +/- 0.06
Balanced Accuracy: 80.74 +/- 0.21
Kappa: 0.76

Users Accuracy (100%-Commission Error):
TREE_VEG: 90.47
NON-TREE_VEG: 88.22
NON-VEG: 57.39

Users Error:
TREE_VEG: 0.08
NON-TREE_VEG: 0.07
NON-VEG: 0.34

Producers Accuracy (100%-Omission Error):
TREE_VEG: 85.22
NON-TREE_VEG: 90.53
NON-VEG: 66.48

Producers Error:
TREE_VEG: 0.10
NON-TREE_VEG: 0.07
NON-VEG: 0.35

Number of Samples in each class:
TREE_VEG: 202848
NON-TREE_VEG: 115025
NON-VEG: 32375

Observed
TREE VEG NON-TREE VEG NON-VEG Users Acc Users SE
Predicted TREE VEG 116843.92 10762.01 1549.40 90.47 0.08
NON-TREE VEG 19003.98 176309.33 4528.37 88.22 0.07
NON-VEG 1264.05 7685.42 12055.29 57.39 0.34
Producers Acc 85.22 90.53 66.48 None
Producers SE 0.10 0.07 0.35 None

LCMS v2024-10 AK Land Cover Level 3 Accuracy

Overall Accuracy: 72.05 +/- 0.19
Balanced Accuracy: 76.38 +/- 0.43
Kappa: 0.64

Users Accuracy (100%-Commission Error):
TREES: 79.43
SHRUBS: 72.71
GRASS: 43.40
BARREN: 67.68
SNOW: 90.59
WATER: 96.83

Users Error:
TREES: 0.28
SHRUBS: 0.47
GRASS: 0.45
BARREN: 0.62
SNOW: 0.36
WATER: 0.31

Producers Accuracy (100%-Omission Error):
TREES: 86.68
SHRUBS: 42.51
GRASS: 61.02
BARREN: 81.79
SNOW: 96.68
WATER: 89.60

Producers Error:
TREES: 0.24
SHRUBS: 0.40
GRASS: 0.53
BARREN: 0.56
SNOW: 0.23
WATER: 0.52

Number of Samples in each class:
TREES: 25183
SHRUBS: 14860
GRASS: 8460
BARREN: 4587
SNOW: 2828
WATER: 2095

Observed
TREES SHRUBS GRASS BARREN SNOW WATER Users Acc Users SE
Predicted TREES 17089.42 3059.00 1159.14 145.11 0.00 61.18 79.43 0.28
SHRUBS 1282.76 6541.98 1099.74 73.43 0.00 0.00 72.71 0.47
GRASS 1208.34 5064.13 5191.78 252.73 0.00 246.78 43.4 0.45
BARREN 135.83 725.69 741.32 3871.29 188.61 57.42 67.68 0.62
SNOW 0.00 0.00 264.89 355.61 5974.48 0.00 90.59 0.36
WATER 0.22 0.00 51.06 35.03 16.85 3146.50 96.83 0.31
Producers Acc 86.68 42.51 61.02 81.79 96.68 89.60 None
Producers SE 0.24 0.40 0.53 0.56 0.23 0.52 None

LCMS v2024-10 CONUS Land Cover Level 3 Accuracy

Overall Accuracy: 79.11 +/- 0.07
Balanced Accuracy: 71.77 +/- 3.20
Kappa: 0.70

Users Accuracy (100%-Commission Error):
TREES: 90.47
SHRUBS: 74.22
GRASS: 74.10
BARREN: 40.03
SNOW: 82.65
WATER: 93.95

Users Error:
TREES: 0.08
SHRUBS: 0.17
GRASS: 0.12
BARREN: 0.41
SNOW: 7.02
WATER: 0.30

Producers Accuracy (100%-Omission Error):
TREES: 85.22
SHRUBS: 60.53
GRASS: 86.90
BARREN: 54.69
SNOW: 62.30
WATER: 81.00

Producers Error:
TREES: 0.10
SHRUBS: 0.17
GRASS: 0.10
BARREN: 0.48
SNOW: 7.80
WATER: 0.46

Number of Samples in each class:
TREES: 202848
SHRUBS: 36067
GRASS: 78958
BARREN: 21543
SNOW: 840
WATER: 9992

Observed
TREES SHRUBS GRASS BARREN SNOW WATER Users Acc Users SE
Predicted TREES 116843.92 5987.33 4774.68 921.50 0.35 627.55 90.47 0.08
SHRUBS 6578.43 48374.23 8398.92 1828.75 0.00 0.87 74.22 0.17
GRASS 12425.55 19746.46 99789.72 2040.16 0.00 658.59 74.1 0.12
BARREN 1161.78 5792.38 1645.11 5833.12 14.20 124.02 40.03 0.41
SNOW 0.00 0.00 0.00 5.05 24.04 0.00 82.65 7.02
WATER 102.28 19.28 228.65 37.54 0.00 6017.32 93.95 0.3
Producers Acc 85.22 60.53 86.90 54.69 62.30 81.00 None
Producers SE 0.10 0.17 0.10 0.48 7.80 0.46 None

LCMS v2024-10 AK Land Cover Level 4 Accuracy

Overall Accuracy: 64.45 +/- 0.20
Balanced Accuracy: 35.76 +/- 0.35
Kappa: 0.57

Users Accuracy (100%-Commission Error):
TREES: 71.86
TS-TREES: 0.00
SHRUBS-TRE: 0.88
GRASS-TREE: 1.81
BARREN-TRE: nan
TS: 57.69
SHRUBS: 25.66
GRASS-SHRU: nan
BARREN-SHR: nan
GRASS: 42.29
BARREN-GRA: 2.56
BARREN-IMP: 67.68
SNOW: 90.59
WATER: 96.83

Users Error:
TREES: 0.31
TS-TREES: 0.00
SHRUBS-TRE: 1.34
GRASS-TREE: 0.66
BARREN-TRE: nan
TS: 0.64
SHRUBS: 0.80
GRASS-SHRU: nan
BARREN-SHR: nan
GRASS: 0.45
BARREN-GRA: 2.41
BARREN-IMP: 0.62
SNOW: 0.36
WATER: 0.31

Producers Accuracy (100%-Omission Error):
TREES: 91.85
TS-TREES: 0.00
SHRUBS-TRE: 0.03
GRASS-TREE: 0.74
BARREN-TRE: 0.00
TS: 63.39
SHRUBS: 12.88
GRASS-SHRU: 0.00
BARREN-SHR: 0.00
GRASS: 63.47
BARREN-GRA: 0.20
BARREN-IMP: 81.79
SNOW: 96.68
WATER: 89.60

Producers Error:
TREES: 0.21
TS-TREES: 0.00
SHRUBS-TRE: 0.04
GRASS-TREE: 0.27
BARREN-TRE: 0.00
TS: 0.65
SHRUBS: 0.43
GRASS-SHRU: 0.00
BARREN-SHR: 0.00
GRASS: 0.54
BARREN-GRA: 0.19
BARREN-IMP: 0.56
SNOW: 0.23
WATER: 0.52

Number of Samples in each class:
TREES: 21599
TS-TREES: 472
SHRUBS-TRE: 1787
GRASS-TREE: 1121
BARREN-TRE: 204
TS: 5407
SHRUBS: 5641
GRASS-SHRU: 3541
BARREN-SHR: 271
GRASS: 7843
BARREN-GRA: 617
BARREN-IMP: 4587
SNOW: 2828
WATER: 2095

Observed
TREES TS-TREES SHRUBS-TRE GRASS-TREE BARREN-TRE TS SHRUBS GRASS-SHRU BARREN-SHR GRASS BARREN-GRA BARREN-IMP SNOW WATER Users Acc Users SE
Predicted TREES 15129.01 270.36 1080.63 537.81 54.68 1286.84 1218.91 294.46 50.72 932.56 0.87 136.69 0.00 61.18 71.86 0.31
TS-TREES 0.00 0.00 0.00 0.00 0.00 1.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.0
SHRUBS-TRE 9.10 0.00 0.43 0.00 0.00 7.23 31.41 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.88 1.34
GRASS-TREE 0.00 0.00 0.00 7.41 0.00 0.00 107.91 29.38 30.91 222.40 3.30 7.99 0.00 0.00 1.81 0.66
BARREN-TRE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
TS 343.92 167.11 201.49 67.29 28.44 3469.31 1212.16 103.87 29.68 386.46 0.00 3.67 0.00 0.00 57.69 0.64
SHRUBS 191.29 49.96 128.03 100.90 4.34 466.73 765.97 405.57 88.70 704.70 8.58 69.76 0.00 0.00 25.66 0.8
GRASS-SHRU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
BARREN-SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
GRASS 681.15 25.27 223.49 271.98 6.45 219.03 2356.03 2439.96 7.25 5041.63 149.05 252.73 0.00 246.78 42.29 0.45
BARREN-GRA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 41.86 0.00 0.00 1.10 0.00 0.00 0.00 2.56 2.41
BARREN-IMP 116.05 0.00 5.64 10.69 3.44 22.91 256.67 367.86 78.25 364.84 376.48 3871.29 188.61 57.42 67.68 0.62
SNOW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 239.51 25.38 355.61 5974.48 0.00 90.59 0.36
WATER 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51.06 0.00 35.03 16.85 3146.50 96.83 0.31
Producers Acc 91.85 0.00 0.03 0.74 0.00 63.39 12.88 0.00 0.00 63.47 0.20 81.79 96.68 89.60 None
Producers SE 0.21 0.00 0.04 0.27 0.00 0.65 0.43 0.00 0.00 0.54 0.19 0.56 0.23 0.52 None

LCMS v2024-10 CONUS Land Cover Level 4 Accuracy

Overall Accuracy: 67.18 +/- 0.08
Balanced Accuracy: 40.41 +/- 2.27
Kappa: 0.57

Users Accuracy (100%-Commission Error):
TREES: 82.35
TS-TREES: Not Modeled
SHRUBS-TRE: 10.68
GRASS-TREE: 35.26
BARREN-TRE: 26.15
TS: Not Modeled
SHRUBS: 39.11
GRASS-SHRU: 38.32
BARREN-SHR: 34.34
GRASS: 73.74
BARREN-GRA: 1.58
BARREN-IMP: 40.03
SNOW: 82.65
WATER: 93.95

Users Error:
TREES: 0.11
TS-TREES: Not Modeled
SHRUBS-TRE: 1.04
GRASS-TREE: 0.42
BARREN-TRE: 3.65
TS: Not Modeled
SHRUBS: 0.40
GRASS-SHRU: 0.24
BARREN-SHR: 0.50
GRASS: 0.12
BARREN-GRA: 0.66
BARREN-IMP: 0.41
SNOW: 7.02
WATER: 0.30

Producers Accuracy (100%-Omission Error):
TREES: 93.59
TS-TREES: Not Modeled
SHRUBS-TRE: 1.50
GRASS-TREE: 16.97
BARREN-TRE: 1.63
TS: Not Modeled
SHRUBS: 21.32
GRASS-SHRU: 40.25
BARREN-SHR: 23.13
GRASS: 88.40
BARREN-GRA: 0.20
BARREN-IMP: 54.69
SNOW: 62.30
WATER: 81.00

Producers Error:
TREES: 0.08
TS-TREES: Not Modeled
SHRUBS-TRE: 0.15
GRASS-TREE: 0.23
BARREN-TRE: 0.26
TS: Not Modeled
SHRUBS: 0.25
GRASS-SHRU: 0.25
BARREN-SHR: 0.37
GRASS: 0.10
BARREN-GRA: 0.08
BARREN-IMP: 0.48
SNOW: 7.80
WATER: 0.46

Number of Samples in each class:
TREES: 163335
TS-TREES: Not Modeled
SHRUBS-TRE: 10900
GRASS-TREE: 26494
BARREN-TRE: 2119
TS: Not Modeled
SHRUBS: 13095
GRASS-SHRU: 15831
BARREN-SHR: 7141
GRASS: 75723
BARREN-GRA: 3235
BARREN-IMP: 21543
SNOW: 840
WATER: 9992

Observed
TREES SHRUBS-TRE GRASS-TREE BARREN-TRE SHRUBS GRASS-SHRU BARREN-SHR GRASS BARREN-GRA BARREN-IMP SNOW WATER Users Acc Users SE
Predicted TREES 94704.14 3394.83 9587.66 489.02 1399.95 1184.25 31.53 2759.18 65.99 810.22 0.35 581.85 82.35 0.11
SHRUBS-TRE 310.94 94.82 109.76 4.04 203.43 110.39 16.06 36.90 0.00 1.16 0.00 0.00 10.68 1.04
GRASS-TREE 2242.73 835.58 4624.44 403.40 1090.87 1355.59 495.61 1824.39 88.04 110.13 0.00 43.29 35.26 0.42
BARREN-TRE 0.37 0.00 4.33 37.86 34.66 21.66 43.32 0.18 0.00 0.00 0.00 2.42 26.15 3.65
SHRUBS 283.42 387.61 1152.19 138.42 5829.34 4009.42 1372.74 1453.63 36.62 241.95 0.00 0.00 39.11 0.4
GRASS-SHRU 180.41 623.53 2576.79 381.75 10259.01 15876.80 4533.47 5328.32 945.74 720.78 0.00 0.87 38.32 0.24
BARREN-SHR 17.33 134.30 430.97 271.72 1282.94 2172.26 3038.24 368.78 265.83 866.01 0.00 0.00 34.34 0.5
GRASS 2959.94 843.68 8473.98 147.96 6105.01 12325.28 971.54 99037.43 746.62 2031.15 0.00 658.59 73.74 0.12
BARREN-GRA 0.00 0.00 0.00 0.00 104.34 121.30 118.98 0.00 5.66 9.01 0.00 0.00 1.58 0.66
BARREN-IMP 403.66 17.83 293.72 446.57 1029.34 2257.78 2505.26 999.90 645.21 5833.12 14.20 124.02 40.03 0.41
SNOW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.05 24.04 0.00 82.65 7.02
WATER 90.94 3.64 2.79 4.91 1.98 11.28 6.03 226.13 2.52 37.54 0.00 6017.32 93.95 0.3
Producers Acc 93.59 1.50 16.97 1.63 21.32 40.25 23.13 88.40 0.20 54.69 62.30 81.00 None
Producers SE 0.08 0.15 0.23 0.26 0.25 0.25 0.37 0.10 0.08 0.48 7.80 0.46 None

LCMS v2024-10 AK Land Use Level 1 Accuracy

Overall Accuracy: 99.83 +/- 0.02
Balanced Accuracy: 72.71 +/- 2.79
Kappa: 0.59

Users Accuracy (100%-Commission Error):
Anthro: 85.26
Non-Anthro: 99.85

Users Error:
Anthro: 3.84
Non-Anthro: 0.02

Producers Accuracy (100%-Omission Error):
Anthro: 45.44
Non-Anthro: 99.98

Producers Error:
Anthro: 3.94
Non-Anthro: 0.01

Number of Samples in each class:
Anthro: 2226
Non-Anthro: 55787

Observed
Anthro Non-Anthro Users Acc Users SE
Predicted Anthro 72.53 12.53 85.26 3.84
Non-Anthro 87.10 57868.17 99.85 0.02
Producers Acc 45.44 99.98 None
Producers SE 3.94 0.01 None

LCMS v2024-10 CONUS Land Use Level 1 Accuracy

Overall Accuracy: 90.70 +/- 0.05
Balanced Accuracy: 88.25 +/- 0.09
Kappa: 0.76

Users Accuracy (100%-Commission Error):
Anthro: 81.52
Non-Anthro: 94.02

Users Error:
Anthro: 0.13
Non-Anthro: 0.05

Producers Accuracy (100%-Omission Error):
Anthro: 83.13
Non-Anthro: 93.37

Producers Error:
Anthro: 0.12
Non-Anthro: 0.05

Number of Samples in each class:
Anthro: 74206
Non-Anthro: 276042

Observed
Anthro Non-Anthro Users Acc Users SE
Predicted Anthro 75736.91 17168.65 81.52 0.13
Non-Anthro 15364.43 241731.78 94.02 0.05
Producers Acc 83.13 93.37 None
Producers SE 0.12 0.05 None

LCMS v2024-10 AK Land Use Level 2 Accuracy

Overall Accuracy: 84.93 +/- 0.15
Balanced Accuracy: 73.97 +/- 3.73
Kappa: 0.77

Users Accuracy (100%-Commission Error):
Agriculture: 75.75
Developed: 91.97
Forest: 83.08
Other: 92.37
Rangeland: 81.96

Users Error:
Agriculture: 7.09
Developed: 3.83
Forest: 0.27
Other: 0.22
Rangeland: 0.25

Producers Accuracy (100%-Omission Error):
Agriculture: 75.62
Developed: 37.70
Forest: 84.70
Other: 89.00
Rangeland: 82.82

Producers Error:
Agriculture: 7.09
Developed: 4.37
Forest: 0.26
Other: 0.26
Rangeland: 0.24

Number of Samples in each class:
Agriculture: 1076
Developed: 1150
Forest: 24106
Other: 9535
Rangeland: 22146

Observed
Agriculture Developed Forest Other Rangeland Users Acc Users SE
Predicted Agriculture 27.72 0.00 6.07 0.00 2.80 75.75 7.09
Developed 0.00 46.36 1.59 2.33 0.13 91.97 3.83
Forest 0.82 35.29 16054.33 157.39 3077.25 83.08 0.27
Other 0.00 4.70 69.24 13358.38 1029.99 92.37 0.22
Rangeland 8.11 36.62 2823.23 1490.92 19807.05 81.96 0.25
Producers Acc 75.62 37.70 84.70 89.00 82.82 None
Producers SE 7.09 4.37 0.26 0.26 0.24 None

LCMS v2024-10 CONUS Land Use Level 2 Accuracy

Overall Accuracy: 83.93 +/- 0.06
Balanced Accuracy: 73.95 +/- 0.27
Kappa: 0.77

Users Accuracy (100%-Commission Error):
Agriculture: 77.46
Developed: 88.87
Forest: 88.93
Other: 81.72
Rangeland: 83.35

Users Error:
Agriculture: 0.14
Developed: 0.38
Forest: 0.09
Other: 0.39
Rangeland: 0.11

Producers Accuracy (100%-Omission Error):
Agriculture: 89.19
Developed: 37.31
Forest: 91.07
Other: 70.93
Rangeland: 81.25

Producers Error:
Agriculture: 0.11
Developed: 0.38
Forest: 0.08
Other: 0.43
Rangeland: 0.11

Number of Samples in each class:
Agriculture: 48074
Developed: 26132
Forest: 187755
Other: 22717
Rangeland: 65570

Observed
Agriculture Developed Forest Other Rangeland Users Acc Users SE
Predicted Agriculture 66628.46 2838.15 1894.62 107.21 14552.31 77.46 0.14
Developed 151.83 6118.47 339.82 8.57 266.11 88.87 0.38
Forest 1267.45 3505.47 109449.70 922.98 7922.11 88.93 0.09
Other 17.59 216.15 320.55 7840.21 1199.69 81.72 0.39
Rangeland 6639.14 3718.64 8181.59 2174.25 103720.71 83.35 0.11
Producers Acc 89.19 37.31 91.07 70.93 81.25 None
Producers SE 0.11 0.38 0.08 0.43 0.11 None